skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "De_Giacomo, Alessandro"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nanoparticle-enhanced laser-induced breakdown spectroscopy and Tag-LIBS are two approaches that have been shown to significantly enhance LIBS sensitivity and specificity. In an effort to combine both of these approaches, we have initiated a study on the effect of the presence of Silver nanoparticle concentrations on Europium (Eu) and Ytterbium (Yb) LIBS signals. These elements are part of metal-loaded polymers conjugated to antibodies. We observe a signal enhancement of the emission lines of about 10 and 12 times for the Europium and Ytterbium lines. This study shows that Europium and Ytterbium are enhanced differently; Europium shows enhancement for both neutral and ionized species while the Ytterbium shows enhancement only for ionized species. Additionally, we found that NPs at 0.1 mg/mL and 0.05 mg/mL achieved maximum enhancement for Eu and Yb, respectively. Based on our findings, the temperature and electron density of Eu and Yb are not significantly different for NPs concentrations, but the total signal intensity is significantly higher for optimum NP concentrations for both Eu and Yb. 
    more » « less